WE-E-BRB-09: A GPU-Based Monte Carlo QA Tool for IMRT and VMAT.

نویسندگان

  • Y Graves
  • G Kim
  • M Folkerts
  • T Teke
  • I Popescu
  • L Cervino
  • Z Tian
  • X Jia
  • S Jiang
چکیده

PURPOSE To develop a GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) tool employing patient geometry and actual delivery information. METHODS First, we generate fluence maps at all beam angles from the initial treatment plan. A GPU-based MC dose engine, gDPM, is employed for the secondary dose calculation (SDC) on patient CT. This SDC is used to verify the TPS plan dose (PD) accuracy. Before the 1st treatment fraction, we deliver the treatment plan on a Linac without any phantom setup to obtain machine log files. With the log files, we extract actually delivered fluence maps at all beam angles and perform delivered dose calculation (DDC) using gDPM. The difference between DDC and SDC indicates possible errors in data transferring and machine delivery. Lastly, the comparison between DDC and PD shows the accumulative errors from all the possible sources. Moreover, a web application for this QA tool is developed for clinical use. We have tested this QA tool on 6 patients, 4 VMAT and 2 IMRT patients. We reported mean gamma values and passing rates inside the 20% isodose line; DVH plot and dose difference matrix are also documented. RESULTS For all six patients, the gamma passing rates within the 20% isodose line for SDC, DDC and PD comparisons are all higher than 95%. In the DVH plot, the three dose distributions were found to be very close. A typical IMRT or VMAT case takes less than one minute to run the whole QA tool. CONCLUSIONS We have developed a GPU-based MC QA tool which can be used for efficient and easy IMRT and VMAT QA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT

Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...

متن کامل

The quality assurance of volumetric modulated arc therapy (VMAT) plans for early stage prostate cancer: a technical note

As radiation therapy transitions from intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) it is important to consider the quality assurance (QA) of VMAT plans in light of what has previously been learned and developed in IMRT QA. This technical note assesses if IMRT based plan QA software, which has reduced the need in IMRT for phantom dose measurements on th...

متن کامل

Statistical process control analysis for patient-specific IMRT and VMAT QA

This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with ...

متن کامل

A Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images

The aim in this study is to develop a generalized strategy for 3D dose verification of IMRT and VMAT planes using EPID transit images in combination with Monte Carlo (MC) simulations. An EPID-based dosimetric verification procedure was developed to convert EPID-measured transit images into 2D exit photon fluence by de-convoluting with the MC-simulated EPID response kernels. The present scatter ...

متن کامل

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 6Part27  شماره 

صفحات  -

تاریخ انتشار 2012